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Abstract 

Background: A pangenome aims to capture the complete genetic diversity within 
a species and reduce bias in genetic analysis inherent in using a single reference 
genome. However, the current linear format of most plant pangenomes limits the pres-
entation of position information for novel sequences. Graph pangenomes have been 
developed to overcome this limitation. However, bioinformatics analysis tools for graph 
format genomes are lacking.

Results: To overcome this problem, we develop a novel strategy for pangenome 
construction and a downstream pangenome analysis pipeline (PSVCP) that captures 
genetic variants’ position information while maintaining a linearized layout. Using 
PSVCP, we construct a high-quality rice pangenome using 12 representative rice 
genomes and analyze an international rice panel with 413 diverse accessions using 
the pangenome as the reference. We show that PSVCP successfully identifies causal 
structural variations for rice grain weight and plant height. Our results provide insights 
into rice population structure and genomic diversity. We characterize a new locus 
(qPH8-1) associated with plant height on chromosome 8 undetected by the SNP-based 
genome-wide association study (GWAS).

Conclusions: Our results demonstrate that the pangenome constructed by our 
pipeline combined with a presence and absence variation-based GWAS can provide 
additional power for genomic and genetic analysis. The pangenome constructed in 
this study and the associated genome sequence and genetic variants data provide 
valuable genomic resources for rice genomics research and improvement in future.
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Background
Rice (Oryza sativa L.) is one of the most important staple crops, feeding nearly half of 
the world’s population. As the population expands to 10 billion people [1, 2], there is 
an urgent need to increase the productivity of crops, while facing the impact of climate 
change on agricultural productivity. The application of genomics-assisted breeding is 
believed as one of the best opportunities to increase crop productivity, with the exploita-
tion of diversity stored in germplasm collections as a major resource for crop improve-
ment [3, 4]. With rapid advances in DNA sequencing technologies, genomic diversity 
within rice germplasm has been characterized by resequencing thousands of individuals 
and comparing the resulting data with reference genome assemblies. However, it is now 
understood that a single reference genome does not represent the genomic diversity of a 
species due to significant structure variations (SVs) between individuals [5]. To capture 
the genomic variations in a population, pangenome assemblies have been constructed. 
Pangenomes represent the gene contents of a species rather than a single individual [6], 
and using a pangenome as a reference, SVs can be more easily and accurately genotyped 
by low-cost short-read sequencing technologies, facilitating efficient characterization 
and capture of genomic diversity within a species.

Pangenomes have now been constructed and analyzed for several crop species, includ-
ing wheat, Brassicas, barley, banana, and pigeon pea [7–11]. Several pangenomes have 
been constructed in rice, and pangenomic analyses have identified genome sequences 
absent in the Nipponbare reference, the most commonly used reference in rice genomic 
studies [12–14]. For example, a pangenome study using 3010 rice accessions identified 
268 Mb of new sequences, with 12,465 new genes and 19,721 dispensable genes com-
pared to the Nipponbare rice reference genome [15].

Recent advances in pangenomics have led to the construction of graph-based pange-
nomes [16, 17] that code genetic variants as nodes and edges and preserve the contiguity 
of the sequence and structural variation between individuals [18]. Graph-based pange-
nome approaches are relatively new, but have been applied to many important crops, 
including soybean, bread wheat, and rice [13, 19–21]. Recently, a comprehensive graph-
based rice pangenome was constructed with 251 accessions spanning both cultivated 
and wild species of Asian and African rice, which helps characterize lineage-specific 
haplotypes for agronomic-related genes and shed light on rice evolutionary events [22]. 
Despite its advantages, the graph-based pangenome also has some limitations; for exam-
ple, as most genome analysis tools were developed for linear sequences, scalable soft-
ware and mature data structures designed explicitly for graph-based pangenome analysis 
are still limited at present. A linear format pangenome with a fixed order coordinate sys-
tem is still valuable for genomic studies. However, linear pangenomes struggle to repre-
sent the position of SVs, resulting in the loss of valuable information.

In this study, we developed a pangenome construction strategy that can preserve the 
position information of novel sequences identified during pangenome construction 
and embed them into a linear pangenome. We also developed a suite of tools for map-
ping short-read sequencing data to this pangenome for SV genotyping, including pres-
ence and absence variations (PAVs), translocations, and inversions, that can recover the 
genomic position of sequence variations. We then applied this pipeline to construct a 
rice pangenome using 12 diverse accessions representing major subpopulations of Asian 
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rice, and identified SVs from an international rice mini core panel consisting of 413 
accessions [23]. Our results revealed extensive genomic diversity among rice germplasm, 
and population genetic analysis based on PAVs identified in the pangenome provided 
insights into the population structure of Asian rice. The PAVs were further used for a 
genome-wide association study (GWAS), resulting in the successful identification of 
causal PAVs that affect grain weight and plant height. This study presents a new tool 
for pangenome analysis, demonstrating the advantages of using a coordinate-linked lin-
ear pangenome to identify PAVs for functional analysis. Our results provide valuable 
resources for rice functional genomics study.

Results
A novel pangenome construction and PAV analysis pipeline

In this study, we developed a pangenome construction and SV genotype calling pipe-
line (PSVCP) (Additional file  1: Fig. S1). The pipeline includes three main steps, (1) 
iterative alignment between genomes to identify novel segments, then integrating these 
sequences into the reference genome to construct a pangenome (Fig. 1a). (2) Mapping 
short-read sequencing data to the pangenome to detect PAVs based on read coverage 
(Fig. 1b). (3) Calling SVs (including PAVs, translocations and inversions) based on the 
pangenome. The PAVs are identified by investigating short-read mapping and popula-
tion-level comparison (Fig.  1c). Potential translocations are first identified by aligning 
the novel PAV sequences to the reference genome (Fig. 1d). Potential inversions are iden-
tified by comparing genomes used for pangenome construction with the pangenome 
(Fig.  1e). Finally, translocations and inversions are genotyped in individual accession 
by surveying the mapping coverage of the breakpoints of inversions and translocations 
(Fig. 1d, e).

We initially used 12 de novo assembled genome sequences of cultivated rice, includ-
ing 11 Asian cultivated rice (Oryza sativa) accessions selected from 33 representative 
accessions based on their subpopulation [13] and one African cultivated rice (Oryza gla-
berrima) (Additional file 2: Table S1) for pangenome construction using Nipponbare as 

Fig. 1 Scheme diagram of PSVCP pipeline. a Construction of linearized pangenome. Genomes used for 
pangenome construction are iteratively aligned between genomes and the starting reference to identify 
novel segments, then integrate these sequences into the reference genome to construct a pangenome. b 
PAV genotyping in the pangenome for single accession. PAVs are detected by mapping sequencing reads of 
each accession to the pangenome and calculating mapping coverage using a 20-bp window. Two adjacent 
20-bp regions are merged if they show the same presence or absence pattern. c Population-wide PAV 
genotyping. The breakpoint positions of each accession are recorded, and a complete set of all breakpoint 
positions (the breakpoints’ union) are generated. Every segment with two adjacent breakpoints from the 
breakpoints’ union is defined as a new PAV region, named by the adjacent left breakpoint position. PAVs in 
each accession are re-called using the integrated PAV genotypes. All accessions’ new PAV genotypes are 
combined by row, generating a PAV genotype matrix with accession names as row labels and the adjacent 
left breakpoint position as column labels. The PAV genotype matrix was further filtered by minor allele 
frequency (MAF) >0.05. d Translocation genotyping by PSVCP. The novel insertions are aligned against the 
pangenome using BLAST+. The novel insertions matched to 2 or more sequences on the pangenome are 
identified as potential translocations. The presence or absence of translocations is determined by looking 
at the read mapping around its breakpoints, spanning a 39-bp region with a conjunction point at the 
center. e Inversions genotyping by PSVCP. The inversions are identified by comparing each genome used for 
pangenome construction with the pangenome using assemblytics. We further genotyped each potential 
inversion on the pangenome from 413 accessions by examining the mapping coverage of the 39-bp region 
with breakpoints in the center

(See figure on next page.)
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the primary reference [24]. By whole genome comparisons we identified 24,585 novel 
sequences that were inserted into the Nipponbare reference, with 1250 (out of 24,585) 
sequences further classified as potential translocations and 3326 inversions. The mean, 
median, maximum, and sum of novel sequence lengths are 2607 bp, 338 bp, 96,797 bp, 
and 64.10 Mbp respectively (Additional file 1: Fig. S2a, b). A subset of these sequences 
was validated by PCR amplification and sequencing (Additional file 1: Fig. S3). We ana-
lyzed the distribution of these additional sequences and found that 43.1% overlapped 
±2 kb upstream/downstream of genes, while 35.7% of the additional PAV sequences 

Fig. 1 (See legend on previous page.)
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overlapped with genic regions (Additional file 1: Fig. S2c). Altogether, 6797 sequences 
were inserted into 5925 Nipponbare genes (Fig. 2). A total of 1939 new genes were de 
novo annotated, and functional analysis suggests that they are enriched with terms 
associated with photosynthesis, the generation of precursor metabolites, and energy 
(Additional file 2: Table S2). Modelling suggests that the initial 12 rice accessions were 
sufficient to capture the majority of sequence diversity within rice (Additional file 1: Fig. 
S4 and S5a).

The completeness of the pangenome was evaluated using Benchmarking Universal 
Single-Copy Orthologs (BUSCO) [25] (Additional file 2: Table S3). Of the 1614 single-
copy orthologs identified in embryophytes, 98.8% were complete in our assembly, which 
is similar to the Telomere-to-Telomere MH63KL1 genome or a little higher than the 
3K rice pangenome (98.0%) [15] (Additional file  2: Table  S3). We mapped short-read 
sequencing data for 413 rice accessions collected from a diverse international panel 
(RPD2) [23] to the pangenome and the Nipponbare genome respectively. The results 
showed the average mapping rate to the pangenome was 97.84%, which was higher than 
the mapping rate to the Nipponbare rice reference (93.05%) (Additional file 1: Fig. S5b). 
These results demonstrate that our pangenome captured more diversity than the single 
Nipponbare reference.

Population‑wide TE and PAV analysis in an international diverse rice panel

Illumina whole genome sequencing data were obtained from 413 accessions represent-
ing an international rice collection [23]. The reads were mapped to the pangenome, 
and PAVs, translocations, and inversions were genotyped using the PSVCP pipeline. In 

Fig. 2 Feature of the rice pangenome constructed by PSVCP and distributions of PAVs in the other 11 
rice genomes. a Feature of the rice pangenome. From outer-most track to innermost track: (a) New genes 
inserted in the Nipponbare reference (MSU7.0) from PAVs. The different colors indicate the origin of the PAVs; 
(b) Density of genes in the Nipponbare reference genome interrupted by PAVs; (c) Gene density; (d) PAV 
density; b PAV distributions of the 11 genomes. Genomes from outer-most track to innermost track: (a) CG14; 
(b) Basmati1; (c) N22; (d) FH838; (e) Tumba; (f ) TM; (g) R498; (h) CN1; (i) LJ; (j) NamRoo; (k) Lemont
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addition, we also applied our pipeline using the 3K rice genome sequencing data (>15×) 
(Additional file  2: Table  S4) to generate an additional PAV matrix as a supplementary 
resource for the rice genomic community, which can be accessed at https:// osf. io/ 38gtp/. 
The PAVs were validated in randomly selected accessions as described above (Additional 
file 1: Fig. S3). We validated the potential translocations (Additional file 2: Table S5-7 and 
Additional file 1: Fig. S6-11) and inversions (Additional file 2: Table S8-11 and Additional 
file 1: Fig. S12-17) identified in the present study using PacBio long-read sequencing data 
and de novo genome assemblies (Additional file 3. Supplemental notes). The influence of 
the breakpoints introduced during pangenome construction on short-read mapping was 
also evaluated (Additional file 1: Fig. S18-21, and Additional file 2: Table S12-14). The 
results demonstrated that read coverage changes caused by breakpoints do not affect the 
PAV genotyping results in our pipeline (Additional file 3. Supplemental notes).

Around 85% of the inserted sequences were transposable elements, with 40% anno-
tated as Gypsy LTR-retrotransposons and 28.6% as Helitron DNA transposons (Addi-
tional file  2: Table  S15). We examined the diversity of representative retrotransposon 
families across the 413 accessions [26] and identified 66,441 variable retrotransposon 
sequences, with 29,281 (44%) absent from the Nipponbare reference assembly. Retro-
transposon abundance ranged from 12 (Rn60/Gypsy) to 15,599 copies (Rire3 /Gypsy). 
Notably, half of the copies in the retrotransposon TE families Rn60, Rire3, Fam81-
fam82, Rire2, Hopi, Fam93_ors14, Fam51_osr4, and Tos17 were not identified in the 
Nipponbare reference. The majority of retrotransposons were from Hopi, Fam81-fam82, 
and Rire3 TE families, which belong to the Gypsy family, and most of these originate 
from Indica accessions, suggesting an expansion of Gypsy elements in Indica compared 
to Japonica [27, 28]. TE families Fam93_ors14, Hopi, and Fam81-fam82 show signifi-
cantly higher frequency in Indica than Japonica and Aus accessions, while the Rire3 
family is less abundant in Aus varieties compared to the other populations (Additional 
file 2: Table S16). This suggests an ongoing transposition during domestication and sub-
sequent breeding.

We further analyzed the minor allele frequency (MAF) of PAVs within genic and inter-
genic regions. A higher MAF was observed within genic regions (Additional file 1: Fig. 
S22 and Additional file 2: Table S17), suggesting a lower purifying selection for PAVs in 
genic regions. It is noteworthy that although our analysis was based on a representa-
tive subset of an international diverse panel (the selected 413 accessions), analysis using 
this subset may not fully display the MAF distribution of all rice germplasms. A total of 
11,617 (28.9%) dispensable genes across the 413 rice accessions were identified (Addi-
tional file 2: Table S18). Annotation suggests that these genes are enriched for functions 
associated with protein phosphorylation, telomere maintenance, DNA duplex unwind-
ing, photosynthesis, defense response, and pathogenesis (Additional file  2: Table S19), 
which is similar to the findings in other crop pangenome studies [29, 30].

We observed a significant difference in average gene numbers between Japonica, 
Indica, and Aus (Fig. 3a). Japonica contains the largest number of genes (48,884 ± 472), 
with fewer genes in Indica (47,455 ± 537) and Aus (47,441 ± 405). The difference in aver-
age gene number hides a complex pattern of increases and decreases in the frequency of 
specific genes (Fig. 3b). A total of 978 genes show increased frequency in Japonica, while 
2986 genes show decreased frequency. Genes showing increased frequency are enriched 

https://osf.io/38gtp/
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in functions associated with DNA integration (Additional file 2: Table S20), while genes 
showing decreased frequency are annotated with disease resistance terms, including 
pathogenesis and defense response (Additional file 2: Table S21). Among the 2986 genes 
with lower frequency in Indica, 116 (3.8%) genes are absent from the Nipponbare refer-
ence. In contrast, of the 978 genes exhibiting higher frequency in Indica, 513 (52.5%) 
genes are absent from the Nipponbare reference, with 482 genes derived from the Indica 
rice genomes. This reflects differences in gene content between sub-species at the popu-
lation level.

Population structure analysis based on pangenome PAVs

We performed population genetic analysis in the international panel using PAVs and 
compared the results with SNP-based analysis. The genetic differentiation between pop-
ulations estimated based on fixation index (Fst) using the SNPs (Japonica-Indica: 0.476 
±0.207, Japonica-Aus: 0.525 ±0.205, and Indica-Aus: 0.304 ±0.158) is higher than that 
calculated using PAVs (Japonica-Indica: 0.416 ±0.183, Japonica-Aus: 0.430 ±0.184, and 
India-Aus: 0.204 ±0.128) (Additional file 2: Table S22). Fst analysis results show simi-
lar distribution trends between PAVs and SNPs on the whole genome scale (Additional 
file  1: Fig. S23). SNP-based analysis shared genetic differentiation regions with PAV-
based analysis (within the top 1% Fst windows) between populations. For example, 
SNP and PAV results share 33 out of 54 of the Japonica-Indica differentiation regions, 
containing 376 genes. We analyzed 15 well-studied rice domestication and breed-
ing improvement-associated genes and compared the Fst detection between SNPs and 
PAVs. Among these 15 genes, three were within the top 10% of differentiation regions 
among Indica, Japonica, and Aus subpopulations using SNPs and PAVs (Additional file 2: 
Table S23). However, we also detected regions displaying significant differences between 
Fst values based on PAVs and SNPs. To investigate this discrepancy further, we selected 
a prominent region at 7.2–9.2 Mbp of chromosome 8, where we observed a much higher 
Fst value between Indica and Japonica calculated by PAVs than that was calculated by 

Fig. 3 Gene number and frequency analysis among different rice subpopulations based on pangenome. 
a Violin plots showing gene abundance for the Aus, Indica, and Japonica. Significance differences between 
groups are indicated (***p-value < 0.005 ). b Comparison of gene frequency between Indica and Japonica. 
Different colors indicate different p-value ranges
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SNPs (Fig. 4a, b). Further analysis revealed that PAVs could detect more genetic diver-
sity than SNPs in this region (Fig. 4a, b). The length of this region is about 1600 kb in 
the Nipponbare genome, while in the pangenome, the interval is 2 Mb in size, with 271 
annotated genes, of which 162 are transposons. This demonstrates our linear pange-
nome can capture missing genetic diversity in the single reference genome.

PAV-based population structure shows similar clustering to SNP-based phylogeny, 
with 413 accessions clustered into three main subpopulations. However, the PAV-based 
phylogeny does not cluster individuals completely according to subpopulations, and 

Fig. 4 Population structure analysis based on PAVs and SNPs. a Haplotype landscape from PAVs and SNPs 
in the 7.2–9.2-Mb interval of chromosome 8 using the pangenome coordinate. b Fst calculated using PAV 
and SNP data in the 7.2–9.2-Mb interval of chromosome 8 using the pangenome coordinate. The red line 
indicates the Fst values calculated from SNPs, and the blue line indicates the Fst values calculated from PAVs. 
c PCA plot showing the population structure of different rice accessions which were generated by PAV and 
SNP data
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the PAV-based PCA suggests a greater variation between rice accessions than the SNP-
based analyses (Fig. 4c). For example, accessions in Indica and Aus subpopulations were 
grouped into two clusters compared with the SNP-based PCA results, and some acces-
sions in the Indica subpopulation clustered with the Aus subpopulation. A similar pat-
tern was observed in the PAV-based phylogeny with 73 Indica accessions clustering with 
the Aus subpopulation (Additional file 1: Fig. S24).

Using pangenome for PAV‑based GWAS

As a pangenome permits the genotyping of a greater amount of genetic diversity than 
a single reference, it supports more powerful genetic analysis and facilitates captur-
ing missing heritability. To explore this additional potential, particularly for identifying 
functional PAVs underlying QTLs, we conducted GWAS for two important agronomic 
traits of rice, namely thousand grain weight (TGW) and plant height (PH), using SNPs 
genotyped from the Nipponbare reference genome and PAVs genotyped across the 
pangenome.

For TGW, the SNP-GWAS identified 354 significant associations (Additional file  1: 
Fig. S25a), with one of  the most significant signals located in Nipponbare (NIP) Chr5: 
5,375,764 bp (pangenome Chr5: 6,017,339 bp), which is 9063 bp away from GW5, a 
known functional gene controlling rice grain weight [31]. However, none of the associ-
ated SNPs were the causal variations of GW5, which are two PAVs (950 bp and 1212 bp) 
in this region [31]. Using the PAVs genotyped from the pangenome to perform GWAS 
can also narrow down the association signal in the same interval as SNP-GWAS (Fig. 5a 
and Additional file 1: Fig. S25a). Notably, the most significant associated signal directly 
pinpointed the causal variations of GW5 (Fig. 5b, c). We further analyzed the PAV geno-
types, and three haplotypes (Hap1-3) according to the pangenome were identified in our 
GWAS panel. The accessions with Hap1 (containing the 370bp deletion and without the 
1212 bp and 950 bp deletions) showed significantly lower grain weight than accessions 
with the other two haplotypes (Hap2, Hap3) with p-values (two-tailed Student’s t test) of 
7.47×10−5 and 6.02×10−9 respectively (Fig. 5c). This result is in accordance with a previ-
ous study, which demonstrated that the 950 bp deletion decreased the expression of the 
functional gene (qSW5), while the 1212 bp deletion disrupts the coding region of qSW5, 
leading to TGW phenotype variations [31].

SNP-GWAS identified 37 SNPs associated with PH in rice (Additional file  1: Fig. 
S25b). Similar to the GWAS results of TGW, both SNP- and PAV-GWAS were able to 
locate previously characterized locus harboring the “Green Revolution Gene” (sd1) 
[32]. Similarly, the most significant PAV is located inside the causal PAV of the sd1 gene 
(Additional file 1: Fig. S26) [32]. Statistical analysis showed that this PAV is significantly 
correlated with the PH phenotype (two-tailed Student’s t test, p-value: 3.3×  10−29), fur-
ther validating the accuracy and efficiency of GWAS using PAVs genotyped from our 
pangenome.

Interestingly, we also identified a novel locus (qPH8-1) controlling PH in rice on 
chromosome 8 by PAV-GWAS (interval 4,660,000–4,860,000 bp in the pangenome) 
that was not identified by SNP-GWAS (Fig. 6a, b). The most significant PAV was in 
a 13-kb region containing two retrotransposon genes (LOC_Os08g07410, LOC_
Os08g07420), located 1 kb upstream of LOC_Os08g07400 (Additional file 1: Fig. S27). 
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This sequence was present in 288 out of the 413 accessions and validated in randomly 
selected accessions using PCR amplification (Additional file  1: Fig. S28). The acces-
sions without the 13-kb sequence had significantly greater plant height (two-tailed 
Student’s t test, p-value: 5.7 ×  10−20) than those with the sequence. Expression analy-
sis showed that the presence and absence of this 13-kb sequence significantly cor-
related with the expression level of LOC_Os08g07400, located 1 kb downstream from 
the 13-kb sequence (Fig. 6c, d). These results suggested that this PAV, which is pos-
sibly caused by retrotransposon movement, may impact downstream gene expression 
and the plant height phenotype.

Fig. 5 GWAS of thousand grain weight in 413 international accessions. a Manhattan plots of SNP-GWAS 
and PAV-GWAS in chromosome 5 for the thousand grain weight trait. SNPs and PAVs were genotyped in 
the pangenome. b A zoomed view in 5.8 to 6.2 Mb of Manhattan plots of SNP-GWAS and PAV-GWAS in 
chromosome 5 for the thousand grain weight trait. c Haplotype analysis for the loci regulating the thousand 
grain traits. Hap1 contains the 370 bp deletion and without the 1212 bp and 950 bp deletions. Hap2 contains 
the 950bp deletion and without the 370bp deletion. Hap3 contains the 370 bp deletion as well as the 1212 
bp deletions. PAV_Lemont_570 and PAV_Tumba_552 denoted the PAVs. The PAVs’ locations are shown in the 
pangenome by comparing them to the Nipponbare reference genome (MSU7.0). The red star indicates the 
position of the highest −log10(p-value) in PAV-GWAS
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We further investigated the potential mechanism underlying the discordance of 
results between SNP-GWAS and PAV-GWAS in qPH8-1. We examined the landscape 
of genome structure at the population level and examined the relationship between the 
13-kb PAV and the nearby SNPs. The results showed the presence or absence of the 
13-kb sequence strongly correlated with the plant height phenotype. In contrast, the 

Fig. 6 GWAS of plant height in 413 international rice accessions. a Manhattan plot of SNP- and PAV-GWAS in 
chromosome 8 for plant height. SNPs and PAVs were genotyped using the pangenome. The most significant 
hit was detected around the 10-Mb region. Two regions (PAV markers at 3,117,040 and 4,761,060 bp) also 
surpass the significance threshold of 5 −log(P). b A zoomed view of the 3.5- to 6-Mb region of the Manhattan 
plot of SNP-GWAS and PAV-GWAS in chromosome 8 for plant height. c, d Box plot of plant height and relative 
expressions level of Loc_Os08g07400 in 10 accessions contains (present, blue points) and 10 accessions 
without (absent, red points) the 13-kb insertion. The p-values were determined using two-tailed Student’s 
t tests. The middle bars represent the median, and the bottom and top of each box represent the 25th and 
75th percentiles. The whiskers extend to 1.5 times the interquartile range
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SNPs on both sides of the PAV did not (Fig. 7a). Linkage disequilibrium (LD) analysis 
further demonstrated the PAV interval formed an independent LD block. At the same 
time, the PAV genotype was not correlated with the SNP genotype (Fig. 7b).

Discussion
PSVCP provides an accurate and robust tool for pangenome construction and analysis

Many genomics studies include mapping sequencing data to reference genomes to iden-
tify genomic variations. However, these analyses suffer from bias due to the use of a 
single reference genome. Reference bias is especially problematic in the analysis of SVs, 
which are major forms of genomic variation in plants [33]. As an alternative, a pange-
nome can represent the genomic diversity of a species or population better than a sin-
gle reference. Using a pangenome as a reference for sequencing data mapping supports 
accurate downstream analysis and avoids reference bias.

Currently, the most advanced method for pangenome construction and analysis 
is the graph-based strategy, which maintains the position of variable genetic infor-
mation for each accession [17–19]. However, the graph-based pangenome approach 
also faces some challenges. This strategy is still in the early development stage, and 
we lack a standard approach for graph-based pangenome construction and analysis. 

Fig. 7 Population-wide landscape of PAVs and SNPs in the plant height QTL in Chromosome 8. a Genotype 
of PAVs and SNPs in the plant height QTL in Chromosome 8. The red bar indicates the presence of the PAVs; 
the yellow bar indicates the absence of the PAVs. The five-pointed red star indicates the position of the 
peak association PAV marker. The plant height phenotypes of each accession are sorted and displayed in 
the sidebar. b Linkage disequilibrium (LD) heatmap shows the regions surrounding the strong peaks of the 
PAV-GWAS
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Furthermore, using the current graph-based pangenome, it is still difficult to detect 
complex structural variations such as translocations and inversions that are com-
mon in plants. Many pangenomic approaches stem from research on the human 
genome, which has a lower level of genomic variations between individuals than 
plant genomes. As such, the current graph-based pangenomes may not fully repre-
sent large structural variations, which is still a great challenge for plant pangenomic 
studies [34]. Furthermore, since plants contain complex repeat regions, they require 
significant computational resources for graph-based pangenome construction, espe-
cially for crops with large genome sizes. There are still insufficient tools available for 
the analysis of graph-based pangenomes. For example, while pangenome mapping 
algorithms have been developed for mapping reads to sequence graphs [35], none 
could replace linear genome-based mapping tools.

Because of the challenges in applying graph-based pangenomes, the linear pange-
nome is valuable for both functional genomic studies and breeding applications. In 
this study, we developed a new pipeline for constructing linear pangenomes (PSVCP) 
and aimed to overcome the bottleneck of other linear pangenome strategies. A major 
challenge for current linear pangenome construction strategies is the ability to accu-
rately embed the newly identified PAV sequences into the linear reference genome. 
In several recent pangenome studies, including the 3010 rice pangenome [15], the 
tomato pangenome [36], and Brassica napus pangenomes [7], novel sequences are 
placed as separate contigs that do not consider their genomic context. This can limit 
further use of the pangenome in downstream gene mapping or functional valida-
tion of the PAVs, since the nearby sequences may be important and informative for 
the functional characterization. For example, a Pan-SV analysis in tomatoes revealed 
that the majority of gene-associated SVs are in cis-regulatory regions, and many are 
associated with subtle changes in gene expression [37].

To address this issue, PSVCP was designed to place novel sequences into the cor-
rect genome position, providing an accurate genomic map for functional genomic 
studies. The accuracy of the placement of the novel sequences by PSVCP was con-
firmed in the present study by successfully identifying the existence of the novel 
sequences and the sequence surrounding them by PCR amplification followed by 
sequencing. The advantage of our strategy was further demonstrated by GWAS 
analysis using PAVs genotyped in our pangenome. Our PAV-GWAS successfully cap-
tured the casual structural variations of TGW and PH, which are not available in the 
Nipponbare reference genome or are difficult for functional characterization with-
out the sequence information surrounding them. Furthermore, the pangenome con-
structed using PSVCP benefits from its linear format, which can directly integrate 
with currently available bioinformatics pipelines such as GATK [38] for genome var-
iation discovery, and JBrowse [39] for genome visualization.

PSVCP is robust in placing novel PAV sequences into the linear pangenome; it may 
be limited to display more complex SVs such as translocations and inversions, which 
is a challenge in current pangenomics studies, even for the advanced graph-based 
pangenome. In addition, due to its read length, short-read sequencing data may have 
lower sensitivity for SV detection compared with long-read sequencing data.
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PAVs provide insights into rice population structure

Most population structure studies are currently performed using SNPs [40]; however, 
structural variants such as PAVs are increasingly used since they provide additional 
information about the population structure [7, 19, 36]. SV-based population struc-
ture studies are likely to improve our understanding of the adaptation and evolution of 
species.

The rice pangenome constructed in this study contains novel genome sequences and 
annotated genes from comprehensive comparative genomic analysis. Our results indi-
cated that compared to SNPs, PAVs provided novel insights into rice evolution when 
used to identify genetic differentiation regions using Fst and phylogenetic inferences. In 
most cases, we found that SNP- and PAV-based population structure analyses shared  
similar patterns of Fst value changes along the chromosomes. However, in some genomic 
regions, PAV-based analysis has significant different Fst values compared with SNP-
based results, providing higher resolution to differentiate the population structure in 
these regions. As an example, the present study identified a 1.6-Mb interval in chromo-
some 8 displaying much higher Fst values in PAV-based analysis between Japonica and 
Indica than in SNP-based analysis. Higher frequencies of novel sequence insertions and 
more haplotype diversity were discovered in this region using PAVs than SNPs, which 
may cause by transposon movement. This suggests that SNPs may underestimate genetic 
differentiation in some highly diverse genomic regions containing PAVs. These results 
demonstrate that PAV genotypes in our pangenome can provide additional power and 
information in analyzing genomic divergence and evolution.

Detailed analysis of the PAVs identified in the present study indicated that the majority 
of the newly inserted PAV sequences are transposable elements. Compared with SNP-
based phylogeny, PAV-based phylogeny shows that some Indica accessions clustered 
with the Aus subpopulation, which is consistent with the TE-insertion phylogeny anal-
ysis using the 3000 rice accessions [15]. This result also reflects the fact that Aus and 
Indica contain more common TE-insertions, since the divergence of the Indica/Aus lin-
eages occurred more recently (~540,000 years ago) than the divergence of Indica/Japon-
ica (~800,000 years ago) [26]. Additionally, introgression is potentially detected between 
Indica and Aus subpopulations based on the PAV data, consistent with previous studies 
showing that Indica accessions contain Aus introgressions [41] and Indica and Aus show 
closer genetic affinity [42]. The topological variation between SNP- and PAV-based phy-
logenetic analyses are consistent with observations in other plants such as Arabidopsis 
thaliana [43], Amborella trichopoda [29], green millet Setaria viridis [44], and Brassica 
oleracea [7], showing that PAVs or SVs can provide additional resolution to character-
ize population structure that might be associated with transposon movement during 
genome evolution, highlighting the value of using PAVs or SVs in addition to SNPs in 
assessing species evolution.

PAV‑based GWAS provides additional power to identify causal variants

Most GWAS analysis uses SNPs identified from a single reference genome as mark-
ers to detect marker-trait associations. However, recent studies suggest that SVs, 
including PAVs, contribute to and explain more phenotypic variation than SNPs for 
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many traits [45]. Phenotypes associated with regions that are absent in the reference 
genome can only be mapped to a region in the LD block linked with the PAV. How-
ever, this association cannot be identified if the PAV haplotypes are not in LD with 
SNPs surrounding them, as we observed in our results (Fig. 7a). Furthermore, using 
variations identified from a single reference in GWAS may cause bias, which weakens 
the ability of GWAS to identify associations. For example, a maize gene conferring 
resistance to sugarcane mosaic virus is present in the B73 reference genome but not 
in the PH207 reference. Conducting GWAS using SNPs genotyped using the B73 ref-
erence can identify the gene, while the PH207 cannot [46]. Using PAVs identified from 
a pangenome would resolve such problems, and PAV-GWAS can be a valuable com-
plement to SNP-GWAS. For example, a recent study in Brassica napus showed that a 
PAV-based pangenome-wide association study could directly pinpoint the causal SVs 
for silique length, seed weight, and flowering time [47].

In this study, PAVs were genotyped from the pangenome constructed by the PSVCP 
pipeline and used for GWAS analysis of TGW and PH in an international rice panel. 
Both PAV- and SNP-GWAS methods can identify previous characterized QTLs, such 
as GW5 for TGW and sd1 for PH. Surprisingly, the peak PAV-GWAS signals are 
directly and accurately located in the functional PAVs causing the phenotypic vari-
ations. In contrast, the most significant signal for SNP-GWAS can only identify the 
approximate location of the causal variants.

More importantly, PAV-GWAS can identify new candidate causal variations that 
SNP-GWAS cannot discover. In the present study, a 13-kb PAV containing two retro-
transposons was found to be strongly associated with plant height using PAV-GWAS, 
and this variant was not identified using SNP-GWAS. Transposon movements are 
important sources of phenotypic variations. A GWAS study in tomatoes based on 
TE-insertion polymorphisms revealed that transposon movement was associated 
with leaf morphology and fruit color [48]. Further investigation of the 13-kb sequence 
showed that it was located 1 kb upstream from LOC_Os08g07400, whose expression 
was significantly associated with the presence and absence of the 13-kb sequence. 
These results suggest that retrotransposon movement in this locus may lead to phe-
notypic variation by affecting the promoter region of LOC_Os08g07400.

To unravel why SNP-GWAS cannot identify this locus, we investigated the candi-
date variant region at the population level. Our results showed that no SNPs were 
found in the 13 Kb PAV sequence, while SNPs located near the 13-kb PAV sequence 
show a poor correlation with the PAV, with no association between SNPs and the 
plant height phenotype. TEs having a low LD with nearby SNPs were observed in 
other genomic studies in rice and tomato [49]. Akakpo et al. reported that TE-GWAS 
could identify a signal associated with rice grain width on chromosome 4 that was 
missing in SNP-GWAS [50]. Recent independent retrotransposon insertion may 
cause the low LD of SNPs by breaking previous linkage disequilibrium across hap-
lotypes [51, 52]. However, further investigation is required to understand how they 
affect functional gene expression and phenotype variations. Our study demonstrates 
that the PAV-based pangenome-wide association analysis is a powerful approach to 
detect and dissect the genetic variants causing phenotypic variation of agronomical 
traits.
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Conclusions
A new strategy and pipeline to construct a linear pangenome by whole genome com-
parison were developed in the present study. This strategy supported the construction 
of a linear pangenome that can solve the problems of preserving the location infor-
mation of SVs and facilitates downstream pangenomic analysis. A rice pangenome 
was constructed using 12 complete genomes spanning all rice subpopulations. Down-
stream population analysis demonstrated that using the pangenome provided insights 
into the rice population structure and evolution, which are not available by analysis 
using SNPs from a single reference. GWAS analysis using PAVs genotyped from the 
pangenome revealed a significant improvement in power, especially in characterizing 
causal PAVs. The new pangenome construction pipeline and the rice pangenome pro-
vide a novel framework for future pangenomic studies in rice and other plants.

Methods
Plant materials

The RPD panel [23] contains about 2000 accessions and is a representative collection 
from 96 countries. The 413 accessions (Additional file  2: Table  S24) from this study 
were selected from the RPD panel [23] based on diversity and representativeness cal-
culated using the whole genome genotypes, representing the genetic diversity of world-
wide Asian rice. Seeds for 413 accessions were sown on July 28th, 2020, in Guangzhou, 
Guangdong, China. High-molecular-weight genomic DNA was extracted from 30-day-
old leaves following a standard CTAB (hexadecyltrimethylammonium bromide) proto-
col. Sequencing was performed on the Illumina NovaSeq6000 platform (BerryGenomics, 
China). A fastx_toolkit (http:// hanno nlab. cshl. edu/ fastx_ toolk it) was used to remove 
adaptor and low-quality reads. All raw sequence data have been deposited in the NCBI 
sequence read archive (BioProject accession PRJNA820969). Plant height and thousand 
grain weight were assessed at the mature growth stage with three biological replicates.

Construction of the pangenome

Data for twelve assembled genomes were downloaded from the Rice Resource Center 
(https:// ricerc. sicau. edu. cn/) [13], representing Nipponbare, Lemont, NamRoo, LJ, CN1, 
R498, TM, Tumba, FH838, N22, Basmati1, and CG14. We employed an iterative strat-
egy to construct the pangenome. First, we performed a pairwise collinearity comparison 
between Nipponbare and Lemont using MUMmer v4.0.0 [53], with parameters: “--maxgap 
500 --mincluster 1000 --diagdiff 20.” Nipponbare was named as ref0. We used Assemblytics 
V1.2.1 [54] to detect and analyze variants from MUMmer. SVs were identified by compari-
son of the first genome (Lemont) with the Nipponbare reference genome assembly (ref0). 
The insertions larger than 50 bp were identified and incorporated to generate the new refer-
ence genome (ref1). The ref1 genome was then further compared with the next genome iter-
atively until all genomes were incorporated into the pangenome (Additional file 2: Table S1).

Short‑read data processing for PAV‑GWAS

Paired-end short-read sequencing data for each accession was aligned to the pange-
nome using BWA-MEM with default settings [55]. Mapping results were sorted using 

http://hannonlab.cshl.edu/fastx_toolkit
https://ricerc.sicau.edu.cn/
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Picard (https:// github. com/ broad insti tute/ picard) [38] and filtered using SAMtools 
[56], retaining reads with a mapping quality over 20. We used the SAMtools with 
the parameters: “-F 4 -F 256” to remove reads that did not map to the pangenome or 
mapped to the pangenome repeatedly. Using the pangenome as the reference genome, 
we detected the coverage of each accession in every 20 bp region by Mosdepth [57] 
with the parameters: “-b 20.” Two adjacent 20-bp regions were merged if adjacent 
sequences showed the same presence or absence pattern (had coverage of ≥5 reads or 
< 5 reads).

PAV identification

PAVs were called based on the mapping coverage of sequencing reads to the pange-
nome for each accession. The breakpoint positions of each accession were recorded, 
and a complete set of all breakpoint positions (the breakpoints’ union) were generated. 
Every segment with two adjacent breakpoints from the breakpoints’ union is defined as 
a new PAV region, named by the adjacent left breakpoint position. Each accession was 
re-called using the integrated PAV genotypes. All accessions’ new PAV genotypes were 
combined by row, generating a PAV genotype matrix with accession names as row labels 
and the adjacent left breakpoint position as column labels. The PAV genotype matrix 
was further filtered by MAF>0.05.

Gene PAV detection

A gene was considered missing when the horizontal coverage across the CDS is less 
than 95% and the vertical coverage less than two, as used in the 3K-RG study [15] using 
Mosdepth v0.2.6 (-Q 20 -i 2 -x) [57]. A gene PAV matrix was generated showing the 
presence or absence of each gene for each accession. The statistical significance of gene 
frequency changes was calculated using Fisher’s exact test. P-values were adjusted for 
multiple comparisons using the Bonferroni method as implemented in p.adjust from R 
v3.5.0. Genes with an adjusted p-value<0.001 and difference frequency between groups 
≥10% [36] were defined as significant.

Potential translocation and inversion identification

During pangenome construction, the PAV positions were recorded and updated in an 
annotation file in “gff” format. We used seqkit v1.2 [58] with the parameters “seqkit 
subseq -gtf pan.pav.gff -o pan_pav.fa pan.fa” to get the PAV sequences. Then we aligned 
the PAV sequences against the reference genome using BLASTN [59] with parameters 
“-evalue 1e-10 -perc_identity 95 -word_size 1000.” PAV sequences larger than 1kb and 
matched to 2 or more sequences on pangenome positions with sequence similarity 
greater than 95% were identified as potential translocations. The positions of the trans-
locations were recorded. When checking short-read mapping near breakpoints on the 
Integrative Genomics Viewer (IGV) [60], we found that accessions did not contain the 
translocations can have reads covering the breakpoints with 1–15 mismatched bases. To 
filter these reads, we set the threshold for a mismatched base to 19bp. Reads spanned 
at least 39 bp (19 bp on the left and 19 bp on the right) are used to determine whether 
the accession’s sequencing read covers the breakpoint. We genotyped the presence 
or absence of translocations for 413 accessions by checking the read mapping around 

https://github.com/broadinstitute/picard
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breakpoints, with reads spanning a 39-bp region with a conjunction point at the center. 
For each accession, we used SAM tools [56] to collect the short reads near breakpoint 
with parameters “samtools view BamFile Chr:(position_of_breakpoint-20)-(position_
of_breakpoint+20).” Then we counted the number of the reads spanning a 39-bp region 
with a conjunction point at the center. If the mapping coverage of this breakpoint was 
less than 5×, we defined the genotype of the breakpoint as absence (“A”). Otherwise, we 
defined the genotype (≥5×) as presence (“C”). We identified inversions by comparing 
each genome used for pangenome construction with the pangenome using MUMmer 
v4.0.0 [53] and Assemblytics V1.2.1 [54]. We further genotyped each potential inver-
sion in the pangenome using the short-read sequencing data of 413 accessions by the 
same method used for translocation genotyping (examining the mapping coverage of the 
39-bp region with breakpoints in the center).

Short‑read sequencing data processing for SNP‑GWAS

Short-read sequencing data were aligned to the Nipponbare reference genome using 
BWA-MEM [55]. The results were sorted using Picard and filtered using SAMtools, 
retaining reads with a mapping quality over 20. Nucleotide variants for each accession 
were detected using HaplotypeCaller in GATK (v3.8-1-0) [38] with the default parame-
ters. Population nucleotide variants were called using CombineGVCFs and GenotypeG-
VCFs tools in GATK. Finally, we used the SelectVariants and VariantFiltration tool in 
GATK to filter the genotype of the population.

GWAS analysis

To construct the PAV genotype map for GWAS, we used “A” to represent “Absent” and 
“C” to represent “Present” in the HapMap genotype file. PAVs and SNPs were selected 
for GWAS analysis based on the criteria of missing data <15% and MAF >0.05. GWAS 
was performed using a mixed linear model (MLM) with kinship matrix and principal 
component analysis in GAPIT version 2 [61]. The significance cutoff was defined as the 
threshold of –log10(p) <5. Manhattan plots were produced using the CMplot package 
(https:// github. com/ YinLi Lin/R- CMplot) in R v3.5.0.

GO analysis

Functional annotation was performed using Blast2GO v2.5 [62]. Genes were aligned 
to the proteins in the Viridiplantae database using BLASTP [59] (E-values <1 ×  10−5). 
Gene ontology (GO) analysis was conducted using topGO [63], and Fisher’s exact test 
with “elim” was used to correct for multiple comparisons.

Population structure and genotype analysis

Filtered PAV and SNP data were used for the population structure study. SNP-based 
and PAV-based phylogenetic trees of 413 rice accessions were constructed by IQ-tree 
[64] using a maximum likelihood method (with the alrt 1000 -bb 1000), respectively. 
SNP-based and PAV-based principal component analyses were performed with GCTA 
(Genome-wide Complex Trait Analysis) v1.93.2 [65]. SNP-based and PAV-based Fst 
values were calculated using a 100-kb sliding window (with a 10-kb step for FST value 

https://github.com/YinLiLin/R-CMplot
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calculation) using VCFtools [66]. Plink v1.9 [67] was used to detect the minor allele fre-
quency between genic PAV and intergenic PAV.

TE analysis

A de novo transposable element (TE) library was generated for the rice pangenome 
using EDTA v1 (--sensitive 1 --anno 1 --species Rice) [68]. Using BLAST+ v 2.2.3 [59], 
the representative retrotransposon TE families in Carpentier et  al. [26] were used to 
search the rice pangenome library to identify the whole genome-wide TEs (with >85% 
sequence identity and e-value <  10−5).

PCR validation of the 13‑kb insertion in qPH8‑1

For validation of the 13-kb insertion in qPH8-1, primers were designed (Additional file 1: 
Fig. S28a and Additional file 2: Table S25) on both sides of the sequence spanning the 
whole insertion. Accessions with or without the insertion were selected for validation. 
Seedlings of selected accessions were used for DNA extraction by the DNeasy Plant Mini 
Kit (Qiagen, Germany). The DNA samples of the selected rice accessions were used as 
templates for PCR by KOD-FX polymerase (Toyobo, Japan) using the primers described 
above.
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